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ﬁ~> region, the flow has a propensity to form ubiquitous streamwise vortices

appearing in counterrotating pairs. Although their streamwise extent is
presently unknown, it is probably at least an order of magnitude greater than
their diameter. One of the more easily visualized aspects of the bursting
phenomenon are streaks of low speed fluid. They seem to form between two of
the vortices as they remove low speed fluid from the wall and lift it upward.
The streaks usually end by being 1ifted away from the wall. At about the same
time and/or slightly thereafter, they appear to oscillate. This-oscillatory
motion increases in amplitude and scale until a breakdown occurs at which time
completely chaotic motion ensues. This phase of the wall structure occurs on a
very short time scale and consequently has been called the 'burst''. ‘oon there-
after, a larger scale motion emanating from the outer flow field approaches the
wall and cleans the entire area of the chaotic motion; consequently, this
phase of the structure has been called a ''sweep''. The sweep seems to scale
with the outer flow variables, and it appears to form a highly irregular inter-
face with the wall region. The irregularities on this interface appear to
scale with the wall variables.
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Final Report '
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DAAG29-79-C-0137

Ron Blackwelder
Principal Investigator

| Problem studied

Within the last decade, many of the attriputes of turbulent shear
flows have been ascribed to large coherent eddy structures; In
bounded shear flows, there appeared to be two distinct coherent eddies;
one which governs the outer flow field and is responsible for entrain-
ment in the case of turbulent boundary layers, and the second which

dominates the wall region near the boundary. The research supported

. by ARO concentrated on the wall region which is dominated by the

bursting phenomenon consisting of several distinct characteristics.

In this region, the flow has a propensity to form ubiquitous stream-
wise vortices having radii of typically 20-50v/ut. | . They appear

in counterrotating pairs as has been deduced from streamwise velocity
correlations. Although their streamwise extent is presently unknown, it
is probably at léast an order of magnitude greater than their diameter.
One of the more easily visualized aspects of the bursting phenomenon
are streaks of low speed fluid. They seem to form between two of the
vortices as they remove low speed fluid from the wall and lift it

upward. These streams typically are lO-2Ov/uT wide and lOO-IOOOv/uT

long and appear randomly in space and time. The streaks usually end
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by being lifted away from the wall. At about the same time and/or slightly
‘thereafter, they appear to oscillate. This oscillatory motion

increases in amplitude and scale until a breakdown occurs at which

time completely chaotic motion ensues. This phasé of the wall structure
occurs on a very short time scale and consequently has been called the
"burst'. Soon thereafter, a larger scale motion emanating from the
outer flow field approaches the wall and cleans the entire area of

the chaotic motion; consequently, this phase of the structure has

been called a "sweep''. The sweep seems to scale with the outer flow
variables, i.e. § and U_, aﬁd it appears to form a highly irregular
interface with the wall region. The irregularities on this interface

appear to scale with the wall variables v and u,.

11 Summary of Important Results

Many aspects of this problem were unexplored and unknown when this

research was initated in 1972. The approach adopted was to first
develop an experiment technique to detect certain aspects of the
problem and then to study different elements of the bursting process.
Some of the more interesting results follow:

1. VITA Dgtection Technique

A variable internal averaging technique (VITA) was developed

to detect the important phase relationshin associated with the bursting
process. This method is described by Blackwelder and Kaplan (1976).
It was so successful that it is now the most often used and quoted
method for studying the wall layer structure,

2. Inflectional Velocity Profiles

The detection technique was first used on simultaneous

.....................................




streamwise velocity signals taken from the wall region. Conditional
- samples were obtained by ensemble averaging many separate bursting
events. The resulting velocity profiles clearly showed that an
inflectional profile existed on the average. Although this had often
been suspected, this data offered the first quantitative proof and
has been used as a standard in more recent modelling schemes of this
phenomenon.
3. Turbulent Produétlon
Using the detection criteria, it was shown that most of the
turbulent energy production Is indeed associated with the above
process. This has been verified by other investigators and is one
of the fundamental reasons this research is important towards under-
.~ standing the wall region and in modelling bounded shear flows.
l b, ‘Importance of Phase Information

During the earlier work on this project, many of the con-

;5 ditional averages seemed to decay too rapidly in space and time.

l! This was traced to a random phase which existed in the individual

Eg members of the ensemble. Blackwelder (1977) showed that even if the
é% individual members of an ensemble were fdentical, a random arrival

time as a measuring location would severely reduce the magnitude of

;ﬁ the ensemble average.

5. Relationship to the Outer Structure
To study the role of the large scale eddies aBove the wall,
the entire wall was slightly heated and temperature was used as a
passive contaminant. Simultaneous temperature traces of Chen and

Blackwelder (1978) showed that the back sides of the outer large eddies
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were extremely dynamic and suggested that they are relatéd to the
‘bursting period at the wall,

6. Bursting Frequency

Before fhis phase of the research was undertaken, it had

been conjectured that the frequency of occurrence of the bursts
scaled with the boundary layer thickness and the free stream velocity,
Blackwelder and Haritonidis (1983) have shown that the frequency
non~-diminsionalized with viscous wall parameters is constant

independent of the outer flow field over the Reynolds number range

103<u_o/v<i0” .
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